1. 求七年级数学600道计算题
【核心例题】
例1计算:
分析 此题共有项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成 ,可利用通项 ,把每一项都做如此变形,问题会迎刃而解.
解 原式=
=
=
=
例2 已知有理数a、b、c在数轴上的对应点分别为A、B、C(如右图).化简 .
分析 从数轴上可直接得到a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.
解 由数轴知,a<0,a-b<0,c-b>0
所以, = -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c
例3 计算:
分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.
解 原式= =
例4 计算:2-22-23-24-……-218-219+220.
分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.
解 原式=2-22-23-24-……-218+219(-1+2)
=2-22-23-24-……-218+219
=2-22-23-24-……-217+218(-1+2)
=2-22-23-24-……-217+218
=……
=2-22+23
=6
【核心练习】
1、已知│ab-2│与│b-1│互为相反数,试求: 的值.
(提示:此题可看作例1的升级版,求出a、b的值代入就成为了例1.)
2、代数式 的所有可能的值有( )个(2、3、4、无数个)
【参考答案】
1、 2、3
字母表示数篇
【核心提示】
用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.
【典型例题】
例1已知:3x-6y-5=0,则2x-4y+6=_____
分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得 ,把x、y的值代入2x-4y+6可得答案 .这种方法只对填空和选择题可用,解答题用这种方法是不合适的.
解 由3x-6y-5=0,得
所以2x-4y+6=2(x-2y)+6= =
例2已知代数式 ,其中n为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .
分析 当x=1时,可直接代入得到答案.但当x=-1时,n和(n-1)奇偶性怎么确定呢?因n和(n-1)是连续自然数,所以两数必一奇一偶.
解 当x=1时,
= =3
当x=-1时,
= =1
例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25
352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……
752=5625= ,852=7225=
(1)找规律,把横线填完整;
(2)请用字母表示规律;
(3)请计算20052的值.
分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.
解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25
(2)(10n+5)2=100×n(n+1)+25
(3) 20052=100×200(200+1)+25=4020025
例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.
(1)当n=4时,S= ,
(2)请按此规律写出用n表示S的公式.
分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.
解 (1)S=13
(2)可列表找规律:
n 1 2 3 … n
S 1 5 9 … 4(n-1)+1
S的变化过程 1 1+4=5 1+4+4=9 … 1+4+4+…+4=4(n-1)+1
所以S=4(n-1)+1.(当然也可写成4n-3.)
【核心练习】
1、观察下面一列数,探究其中的规律:
—1, , , , ,
①填空:第11,12,13三个数分别是 , , ;
②第2008个数是什么?
③如果这列数无限排列下去,与哪个数越来越近?.
2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:
【参考答案】
1、① , , ;② ;③0.
2、1+n×(n+2) = (n+1)2
平面图形及其位置关系篇
【核心提示】
平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.
【典型例题】
例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.
分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.
解 找交点最多的规律:
直线条数 2 3 4 … n
交点个数 1 3 6 …
交点个数变化过程 1 1+2=3 1+2+3=6 … 1+2+3+…+(n-1)
图形 图1 图2 图3 …
例2 两条平行直线m、n上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.
A.20 B.36 C.34 D.22
分析与解 让直线m上的4个点和直线n上的5个点分别连可确定20条直线,再加上直线m上的4个点和直线n上的5个点各确定的一条直线,共22条直线.故选D.
例3 如图,OM是∠AOB的平分线.射线OC在∠BOM内,ON是∠BOC的平分线,已知∠AOC=80°,那么∠MON的大小等于_______.
分析 求∠MON有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.
解 因为OM是∠AOB的平分线,ON是∠BOC的平分线,
所以∠MOB= ∠AOB,∠NOB= ∠COB
所以∠MON=∠MOB-∠NOB= ∠AOB- ∠COB= (∠AOB-∠COB)= ∠AOC= ×80°=40°
例4 如图,已知∠AOB=60°,OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.
(1)求∠DOE的大小;
(2)当OC在∠AOB内绕O点旋转时,OD、OE仍是∠BOC和∠AOC的平分线,问此时∠DOE的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.
分析 此题看起来较复杂,OC还要在∠AOB内绕O点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE是∠AOB的一半,也就是说要求的∠DOE, 和OC在∠AOB内的位置无关.
解 (1)因为OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.
所以∠DOC= ∠BOC,∠COE= ∠COA
所以∠DOE=∠DOC+∠COE= ∠BOC+ ∠COA= (∠BOC+∠COA)= ∠AOB
因为∠AOB=60°
所以∠DOE = ∠AOB= ×60°=30°
(2)由(1)知∠DOE = ∠AOB,和OC在∠AOB内的位置无关.故此时∠DOE的大小和(1)中的答案相同.
【核心练习】
1、A、B、C、D、E、F是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.
2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.
【参考答案】
1、15条 2、 .
一元一次方程篇
【核心提示】
一元一次方程的核心问题是解方程和列方程解应用题。解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。
【典型例题】
例1已知方程2x+3=2a与2x+a=2的解相同,求a的值.
分析 因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x,可把2x整体代入.
解 由2x+3=2a,得 2x=2a-3.
把2x=2a-3代入2x+a=2得
2a-3+a=2,
3a=5,
所以
例2 解方程
分析 这是一个非常好的题目,包括了去分母容易错的地方,去括号忘变号的情况.
解 两边同时乘以6,得
6x-3(x-1)=12-2(x+1)
去分母,得
6x-3x+3=12-2x-2
6x-3x+2x=12-2-3
5x=7
x=
例3某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.
分析 这类问题我们应首先搞清楚利润率、销售价、进价之间的关系,因销售价=进价×(1+利润率),故还需设出进价,利用销售价不变,辅助设元建立方程.
解:设原进价为x元,销售价为y元,那么按原进价销售的利润率为
,原进价降低后在销售时的利润率为 ,由题意得:
+8%=
解得 y=1.17x
故这种商品原来的利润率为 =17%.
例4解方程 │x-1│+│x-5│=4
分析 对于含一个绝对值的方程我们可分两种情况讨论,而对于含两个绝对值的方程,道理是一样的.我们可先找出两个绝对值的“零点”,再把“零点”放中数轴上对x进行讨论.
解:由题意可知,当│x-1│=0时,x=1;当│x-5│=0时,x=5.1和5两个“零点”把x轴分成三部分,可分别讨论:
1)当x<1时,原方程可化为 –(x-1)-(x-5)=4,解得 x=1.因x<1,所以x=1应舍去.
2)当1≤x≤5时,原方程可化为 (x-1)-(x-5)=4,解得 4=4,所以x在1≤x≤5范围内可任意取值.
3)当x>5时,原方程可化为 (x-1)+(x-5)=4,解得 x=5.因x>5,故应舍去.
所以, 1≤x≤5是比不过的。
【核心练习】
1、已知关于x的方程3[x-2(x- )]=4x和 有相同的解,那么这个解是 .(提示:本题可看作例1的升级版)
2、某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是____千米/小时.
【参考答案】
1、 2、4.8
生活中的数据篇
【核心提示】
生活中的数据问题,我们要分清三种统计图的特点,条形图表示数量多少,折线图表示变化趋势,扁形图表示所占百分比.学会观察,学会思考,这类问题相对是比较简单的.
【典型例题】
例1下面是两支篮球队在上一届省运动会上的4场对抗赛的比赛结果:(单位:分)
研究一下可以用哪些统计图来分析比较这两支球队,并回答下列问题:
(1)你是怎样设计统计图的?
(2)你是怎样评价这两支球队的?和同学们交流一下自己的想法.
分析 选择什么样的统计图应根据数据的特点和要达到的目的来决定.本题可以用复式条形统计图,达到直观、有效地目的.
解 用复式条形统计图:(如下图)
从复式条形图可知乙球队胜了3场输了1场.
例2根据下面三幅统计图(如下图),回答问题:
(1)三幅统计图分别表示了什么内容?
(2)从哪幅统计图你能看出世界人口的变化情况?
(3)2050年非洲人口大约将达到多少亿?你是从哪幅统计图中得到这个数据的?
(4)2050年亚洲人口比其他各洲人口的总和还要多,你从哪幅统计图中可以明显地得到这个结论?
分析 这类问题可根据三种统计图的特点来解答.
解 (1)折线统计图表示世界人囗的变化趋势,条形统计图表示各洲人囗的多少,扇形统计图表示各洲占世界人囗的百分比.
(2)折线统计图
(3)80亿,折线统计图.
(4)扇形统计图
【核心练习】
1、如下图为第27届奥运会金牌扇形统计图,根据图中提供的信息回答下列问题:
(1)哪国金牌数最多?
(2)中国可排第几位?
(3)如果你是中国队的总教练,将会以谁为下一次奥运会的追赶目标?
【参考答案】
1、(1)美国 (2)第3位 (3)俄罗斯.
平行线与相交线篇
【核心提示】
平行线与相交线核心知识是平行线的性质与判定.单独使用性质或判定的题目较简单,当交替使用时就不太好把握了,有时不易分清何时用性质,何时用判定.我们只要记住因为是条件,所以得到的是结论,再对照性质定理和判定定理就容易分清了.
这部分另一核心知识是写证明过程.有时我们认为会做了,但如何写出来呢?往往不知道先写什么,后写什么.写过程是为了说清楚一件事,是为了让别人能看懂,我们带着这种目的去写就能把过程写好了.
【典型例题】
例1平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条.
A.7 B.6 C.9 D.8
分析与解 这样的5个点我们可以画出来,直接查就可得到直线的条数.也可以设只有A、B、C三点在一条直线上,D、E两点分别和A、B、C各确定3条直线共6条,A、B、C三点确定一条直线,D、E两点确定一条直线,这样5个点共确定8条直线.故选D.
例2已知∠BED=60°, ∠B=40°, ∠D=20°,求证:AB∥CD.
分析 要证明两条直线平行,可考虑使用哪种判定方法得到平行?已知三个角的度数,但这三个角并不是同位角或内错角.因此可以考虑作辅助线让他们建立联系.延长BE可用内错角证明平行.过点E作AB的平行线,可证明FG与CD也平行,由此得到AB∥CD.连接BD,利用同旁内角互补也可证明.
解 延长BE交CD于O,
∵∠BED=60°, ∠D=20°,
∴∠BOD=∠BED-∠D=60°-20°=40°,
∵∠B=40°,
∴∠BOD=∠B,
∴AB∥CD.
其他方法,可自己试试!
例3如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,求证: ∠EDF=∠BDF.
分析 由CE、DF同垂直于AB可得CE∥DF,又知AC∥ED,利用内错角和同位角相等可得到结论.
解 ∵CE⊥AB,DF⊥AB,
∴CE∥DF
∴∠EDF=∠DEC, ∠BDF=∠DCE,
∵AC∥ED,
∴∠DEC=∠ACE,
∴∠EDF=∠ACE.
∵CE是∠ACB的平分线,
∴∠DCE=∠ACE,
∴∠EDF=∠BDF.
例4如图,在△ABC中,∠C=90°,∠CAB与∠CBA的平分线相交于O点,求∠AOB的度数.
分析 已知∠C=90°,由此可知∠CAB与∠CBA的和为90°,由角平分线性质可得∠OAB与∠OBA和为45°,所以可得∠AOB的度数.
解 ∵OA是∠CAB的平分线,OB是∠CBA的平分线,
∴∠OAB= ∠CAB,∠OBA= ∠CBA,
∴∠OAB+∠OBA= ∠CAB+ ∠CBA= (∠CAB+∠CBA)= (180°-∠C)=45°,
∴∠AOB=180°-(∠OAB+∠OBA)=135°.
(注:其实∠AOB=180°-(∠OAB+∠OBA)=180°- (180°-∠C)
=90°+ ∠C.
所以∠AOB的度数只和∠C的度数有关,可以作为结论记住.)
【核心练习】
1、如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D,求证:β=2α.(提示:本题可看作例2的升级版)
2、如图,E是DF上一点,B是AC上一点,∠1=∠2,
∠C=∠D,求证:∠A=∠F.
【参考答案】
1、可延长BC或DC,也可连接BD,也可过C做平行线.
2、先证BD∥CE,再证DF∥AC.
三角形篇
【核心提示】
三角形全等的核心问题是证全等.根据全等的5种判定方法,找出对应的边和角,注意一定要对应,不然会很容易出错.如用SAS证全等,必须找出两边和其夹角对应相等.有时为了证全等,条件中不具备两个全等的三角形,我们就需要适当作辅助构造全等.
【典型例题】
例1如图,在△ABC中,AB=AC,D、E分别在BC、AC边上,且∠1=∠B,AD=DE.求证:△ADB≌△DEC.
分析 要证△ADB和△DEC全等,已具备AD=DE一对边,由AB=AC可知∠B=∠C,还需要一对边或一对角.由条件∠1=∠B知,找角比较容易.通过外角可得到∠BDA=∠CED.
证明 ∵AB=AC,
∴∠B=∠C,
∵∠1=∠B,
∴∠1=∠C,
∵∠BDA=∠DAC+∠C,∠CED=∠DAC+∠1
∴∠BDA=∠CED.
在△ADB和△DEC中
,
∴△ADB≌△DEC (AAS).
例2如图,AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E,求证:AB=AC+BD.
分析 要证AB=AC+BD有两种思路,可以把AB分成两段分别和AC、BD相等,也可以把AC、BD平移连接成一条线段,证明其与AB相等.下面给出第一种思路的过程.
证明 在AB上截取AF=AC,连接EF,
∵EA别平分∠CAB,
∴∠CAE=∠FAE,
在△ACE和△AFE中
,
∴△ACE≌△AFE(SAS),
∴∠C=∠AFE.
∵AC∥BD,
∴∠C+∠D=180°,
∵∠AFE+∠BFE=180°,
∴∠BFE=∠D.
∵EB平分∠DBA,
∴∠FBE=∠DBE
在△BFE和△BDE中
∴△BFE≌△BDE(AAS),
∴BF=BD.
∵AB=AF+BF,
∴AB=AC+BD.
例3如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.
分析 观察AP和AQ所在的三角形,明显要证△ABP和△QCA全等.证出全等AP=AQ可直接得到,通过角之间的等量代换可得∠ADP=90°.
证明 (1)∵BD、CE分别是△ABC的边AC和AB上的高,
∴∠AEC=∠ADB=90°,
∴∠ABP+∠BAC=∠QCA+∠CAB=90°,
∴∠ABP=∠QCA
在△ABP和△QCA中
∴△ABP≌△QCA(SAS),
∴AP=AQ.
(2)由(1)△ABP≌△QCA,
∴∠P=∠QAC,
∵∠P+∠PAD=90°,
∴∠QAC+∠PAD=90°,
∴AP⊥AQ.
【核心练习】
1、如图,在△ABC中,AB=BC=CA,CE=BD,则∠AFE=_____度.
2、如图,在△ABC中,∠BAC=90°AB=AC.D为AC中点,AE⊥BD,垂足为E.延长AE交BC于F.求证:∠ADB=∠CDF
【参考答案】
1、60
2、提示:作∠BAC的平分线交BD于P,可先证△ABP≌△CAF,再证△APD≌△CFD.
生活中的轴对称篇
【核心提示】
轴对称核心问题是轴对称性质和等腰三角形.轴对称问题我们要会画对称点和对称图形,会通过对称点找最短线路.等腰三角形的两腰相等及三线合一,好记但更要想着用,有时往往忽略性质的应用.
【典型例题】
例1判断下面每组图形是否关于某条直线成轴对称.
分析与解 根据轴对称的定义和性质,仔细观察,可知(1)是错误的,(2)是成轴对称的.
例2下列图形中对称轴条数最多的是( )
A.正方形 B.长方形 C.等腰三角形 D.等腰梯形
E.等边三角形 F.角 G.线段 H.圆 I.正五角星
分析与解 有一条对称轴的是C、D、F、G,有三条对称轴是E,有四条对称轴的是A,有两条对称轴的是B,有五条对称轴的是I,有无数条对称轴的是H.故选H.
例3 如图,AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管______根.
分析 由添加的钢管长度都与OE相等,可知每增加一根钢管,就增加一个等腰三角形.由点到直线的所有线段中垂线段最短可知,当添加的钢管和OA或OB垂直时,就不能再添加了.
解 每添加一根钢管,就形成一个外角.如添加EF形成外角∠FEA,添加FG形成外角∠GFB.可列表找规律:
添加钢管数 1 2 3 4 … 8
形成的外角度数 20 30 40 50 … 90
当形成的外角是90°时,已添加8根这样的钢管,不能再添加了.故最多能添加这样的钢管8根.
例4小明利用暑假时间去居住在山区的外公家,每天外公都带领小明去放羊,早晨从家出发,到一片草场放羊,天黑前再把羊牵到一条小河边饮水,然后再回家,如图所示,点A表示外公家,点B表示草场,直线l表示小河,请你帮助小明和他外公设计一个方案,使他们每天所走路程最短?
分析 本题A(外公家)和B(草场)的距离已确定,只需找从B到l(小河)再到A的距离如何最小.因A和B在l的同侧,直接确定饮水处(C点)的位置不容易.本题可利用轴对称的性质把A点转化到河流的另一侧,设为A′,不论饮水处在什么位置,A点与它的对称点A′到饮水处前距离都相等,当A′到B的距离最小时,饮水处到A和B的距离和最小.也可作B的对称点确定C点.
解 如图所示,C点即为所求饮水处的位置.
【核心练习】
1、请用1个等腰三角形,2个矩形,3个圆在下面的方框内设计一个轴对称图形,并用简练的语言文字说明你的创意.
2、如图所示,AB=AC,D是BC的中点,DE=DF,BC∥EF.这个图形是轴对称图形吗?为什么?
【参考答案】
1、略
2、是轴对称图形,△ABC与△DEF的对称轴都过点D,都与BC垂直,所以是两条对称轴是同一条直线.
通过这些核心题目的练习,如能做到举一反三,触类旁通,灵活应变.不仅会节约很多时间和精力,或许这样的练习会很有效.
2. 五年级下册体积应用题都有哪些
1、一个长方体的长是4分米,宽是2.5分米,高是3分米,求它的体积是多少立方分米?
2、一个长方体沙坑,长4米,宽2米,深0.5米,如果每立方米黄沙重1.4吨,这黄沙重多少吨?
3.有一种长方体钢材,长2米,横截面是边长为5厘米的正方形,每立方分米钢重7.8千克,这根方钢材重多少千克?
4、一个长方体,底面积是30平方分米,高3米,它的体积是多少立方分米?
5、一张写字台,长1.3m宽0.6m、高0.8m有20张这样的写字台要占多大空间?
6、一个棱长是5分米的正方体鱼缸,里面装满水,把水倒入一个底面积48平方分米,高6分米的的长方体鱼缸里,鱼缸里水有多深?
7、一个棱长8分米的正方体水槽里装了490升水,把这些水倒入一个长10分米,宽7分米,高8分米的长方体水槽里,水槽里的水深是多少?
8、把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)
9. 一个长方体油桶,底面积是18平方分米,它可装43.2千克油,如果每升油重0.8千克,油桶内油高是多少?
10、 一个长方形铁皮长30cm,宽25cm,从四个角各切掉一个长为5cm的正方形,然后做成一个无盖的盒子,这个盒子用了多少铁皮?它的容积是多少?
3. 求数学题,快~~!
五年级数学试卷
一、直接写出得数(10分)
5.43+1.47= 5-3.28= 0.46÷4.6= 4×0.25= 3÷0.3=
85÷(1-0.9)= 0.63÷0.7= 4.5×0.4= 9.58×101-9.58=
二、填空题(20分)
1、3.248×1.26的积里有( )位小数。
2、非零整数的最小计数单位是( );纯小数的最大计数单位是( )。
3、把3.08的小数点向左移动一位,再向右移动两位,结果是( )。
4、8÷11的商保留两位小数约是( );保留一位小数约是( );保留整数约是( )。
5、当梯形的上底逐渐缩小到一点时,梯形就转化成( );当梯形的上底增大到与下底相等时,梯形就转化成( )。
6、比x的5倍多8的数是( );6除以x的商减去8的差是( )。
7、一个平行四边形与一个三角形的面积相等,底也相等,平行四边形的高是6厘米,三角形的高是( )。
8、在(24-3x)÷6中,x等于( )时,结果是0;等于( )时,结果是1。
9、0.8分=( )秒 4.26公顷=( )公顷( )平方米
10、比a的4倍少5的数是( )。
11、32×5=( )
12、两个完全一样的三角形可以拼成一个( )。
三、判断题(5分)
1、两个平行四边形的高相等,它们的面积也相等。 ( )
2、计算一个梯形的面积,必须知道它是上底、下底和高。 ( )
3、4+a=4a ( )
4、38x-4=0 是方程。 ( )
5、x2=2x ( )
四、选择题(5分)
1、 1÷3的商是( )。
A、纯循环小数 B、混循环小数 C、无限不循环小数
2、周长相等的长方形和平行四边形面积相比,( )
A、平行四边形大 B、长方形大 C、相等
3、一个三角形中,其中两个角的平均度数是45度,这个三角形是( )A、锐角三角形 B、直角三角形 C、钝角三角形
4、一个数除以一个带小数,所得的商一定( )这个数。
A、大于 B、等于 C、小于
5、3.995精确到百分位约是( )。
A、4.0 B、4.00 C、3.99
五、列竖式计算,并验算后两个(10分)。
5.778÷5.4= 8.02×3.5=
28.56÷5.1= 1.5×0.25=
六、脱式计算,能简算的要简算(15分)。
8.6×10.1 8.25×4.08+0.75×4.08+4.08
[(8.1-5.6) ×0.9-1] ×0.4 5.6×(12.5- 8.5 ÷0.85)
1.84÷[(28.02+11.98) ×(62.8-62.3) ]
七、解方程(8分)
4x-5×6=12 8x-3x=15.6
30×(x÷4)=60 7.2×0.5-3x=1.2
八、列式计算(6分)
1、甲数是32.8,比乙数的4倍少3.6,求乙数 。
2、一个数加上8的和乘2,积是287,这个数是多少?(用方程解)
九、应用题(1-4题第题4分,第5题5分,共21分)
1、一块梯形土地面积是16平方米,上底是4.6米,高是3.2米,下底是多少米?
2、养鸡场养一些母鸡,其中有26只来航鸡,平均每只年产蛋364个,有25只油鸡,平均每只年产蛋330个,这些母鸡平均每只年产蛋多少个?(得数保留整数)
3、两车从两地同时开出相向而行,4.5小时后两车在距中点9千米处相遇,快车每小时行42千米,甲乙两地相距多少千米?
4、某服装厂有布1200米,先做大人服装150套,每套用布5米,剩下的做小孩衣服,每套用布3米,可以做小孩衣服多少套?(用方程解)
5、修路队修一条路,计划每天修150米,12天完成,如果要提前2天完成,每天应修多少米?(用算术、方程两种方法解答)
五年级数学测试题
一、填空题 (30分)
1、分数单位是1/10的所有最简真分数的和是( )
2、在○里填上“<”“>”“=”
3/8○5/12 1/6×7/8○1/6 3/4×5/2○3/4
3、一个棱长为5厘米的正方体,棱长总和是( ),表面积是( ),体积是( )。
4、 3.05立方米=( )立方米( )立方分米
4.5平方分米=( )平方厘米
1056立方厘米=( )毫升=( )升
5、在括号里填上适当的单位名称。
墨水瓶的容积约是60( )
文具盒的体积约是200( )
微波炉的体积约是40( )
6、 4/5×3/7的意义是( )
7、7/9+6/11+2/9+3/11=(7/9+2/9)+(6/11+3/11),这里运用了( )律进行简便运算。
8、 读作( ),表示( )
9、把棱长10厘米的正方体分割成两个完全一样的长方体,表面积比原来增加了( )平方厘米。
10、把盐放到水中,溶解后形成盐水,盐水的体积○水的体积+盐的体积。
二、计算。
(一)、直接写出得数。(9分)
5/6+2/3= 1/7+1/8= 2/9-1/3=
4/5-3/4= 25×2/5= 0×35/179=
51×3/17= 1/10×1/4= 1×5/79=
(二)计算下列各题,能简算的要简算。(18分)
三、解决问题。(37分)
1、一桶油第一次取出3/8千克,第二次取出3/5千克,第三次取出的比前两次取出的总和少1/10千克。第三次取出多少千克?
2、修一条路,第一周修完全程的1/8,第二周修完全程的1/5,第三周修完时,正好修了全程的一半,第三周修了全程的几分之几?
3、一台拖拉机每小时耕地1/2公顷,1/5小时耕地多少公顷?
4、一个教室的长是8米,宽是6米,高是4米。要粉刷教室的屋顶和四周墙壁,除去门窗和黑板面积25.4平方米,粉刷的面积是多少平方米?
5、一个游泳池长50米,宽25米,池内水深1.2米。如果用水泵向外排水,每分钟排水2.5立方米,需要几小时?
6、一个正方体玻璃容器棱长2分米,向容器内倒入5升水,然后再把一块不规则的石快浸没在水中,这时量得容器内的水深1.5分米。石块的体积是多少立方分米?
五年级期末试卷
一、填空题。(25分)
1、在自然数中,( )是最小的奇数,( )是最小的偶数;最小的质数是( ),最小的合数是( )。
2、的分数单位是( ),它有( )个这样的分数单位,再去掉( )个这样的分数单位就是1,把它化成带分数是( )。
3、6和24的最大公约数是( ),9和10的最小公倍数是( );
18的约数有( ),把72分解质因数是( )。
4、把4千克糖平均分成7份,每份是4千克糖的,每份是千克糖。
5、在○里填上“>”、“<”或“=”。
○ ○ 2○ 2.35 ○
6、==( )÷16=15÷( )=( )(小数)
7、3.05立方分米=( )升=( )毫升
750克=( )千克 2时20分 = ( )时
8、在分数(a≠o)里,当b=( )时,它的值是0;当a=( )时,它的值是b。
9、一个正方体的棱长总和是48厘米。这个正方体的表面积是( ),体积是( )。
10、用4、5、6去除一个数都余3,这数最小是( ),它和( )互质。
11、一项工程,甲单独做10天完成,乙单独做12天完成,甲平均每天完成这项工程的,乙平均每天完成这项工程的。
12、一个长方体木盒,长8分米,宽6分米,高3分米,将它放在桌面上,占桌面的最小面积是( ),最大面积是( )。
13、一个三位数7□□,能同时被3、5整除,两个□中的数的和最大是__________。
二、判断题。(5分)
1、大于而小于的分数有无数个。 ( )
2、长方体的6个面都是长方形。 ( )
3、方程1.2—0.2X=0.4的解是8。 ( )
4、分子比分母大的分数一定是假分数。 ( )
5、两个不同的质数相乘的积,它的约数有3个。 ( )
三、选择题。(5分)
1、在、、、、中,不能化成有限小数的分数有( )个。
A、2 B、3 C、4
2、5和7都是35的( )。
A、 质因数 B、 互质数 C、公约数
3、用同样的小正方体拼成一个大正方体,至少要用( )个。
A、4个 B、8个 C、9个
4、把一根绳子连续对折3次,每段是全长的( )。
A、 B、 C、
5、右图分别是一个长方体的前面和右侧面,
那么这个长方体的底面积是( )
平方厘米。 2厘米 2厘米
A、6 B、12 C、18 6厘米 3厘米
四、计算题。(35分)
1、直接写得数。
+ = 1.8×0.5 = 0.54÷6 = -= - =
1+= 8.1÷0.09= 6-2.8= + = 3 -=
2、解方程。
+X=1 X-= 21-3.2X=5.64
3、计算下面各题(能简算的要简算)。
+ + ++ 2 - -
- +- -(+)-
4、列式计算。
(1)从1里面减去 ,再加上,和是多少?
(2)减去与的和,差是多少?
(3)写出分母是10的所有最简真分数,并求出它们的和。
五、应用题。(30分)
1、某校暑假组织旅游,去北京旅游的占总人数的,去张家界旅游的占总人数的,剩下的去海南旅游。去海南旅游的占总人数的几分之几?
2、“苏果”超市运进蔬菜吨,比运进的水果少吨。“苏果”超市运进蔬菜和水果一共多少吨?
3、“白雪”洗衣机厂计划生产1500台洗衣机,前10天平均每天生产87台,剩下的要在一周内完成,这一周平均每天需生产洗衣机多少台?
4、一种无盖的长方体铁皮水桶,底面是边长4分米的正方形,高1.2米。做一只这样的水桶至少要多少铁皮?这只水桶能装水多少升?
5、把一块棱长是0.8米的正方体钢坯,锻成宽和高都是0.4米的长方体钢材。锻成的钢材长多少米?
4. 110道四年级下册两步计算的应用题整数和小数
1.一个计算器24元,李老师要买4个。他带了100元,钱够吗?
2.公园的一头大象一天要吃350千克食物,饲养员准备了5吨食物,够大象吃20天吗?
3.学校要为图书馆增添两种新书,一种是《儿童网络》,每套125元,另一种是《数学猜想》,每套18元,每种3套,一共多少元?
4.大号运动衣每套145元,小号运动衣每套128元,买大号运动衣34套,小号运动衣25套。
(1)两种运动服各需付多少钱?
(2)一共要付多少钱?
5.学校要添制44套课桌椅,桌子每张128元,椅子每张17元,一共要花多少钱?
6.每棵树苗16元,买3棵送1棵。一次买3棵,每棵便宜多少钱?
7.商场搞了一次促销活动,每袋洗衣粉20元,买4袋送一袋,妈妈买了4袋,每袋便宜多少元?
8.健力宝每瓶2元4角,买3瓶送一瓶,一次买3瓶,每瓶便宜多少钱?
9.一辆汽车从甲地到乙地,去时的速度是64千米/时,共用了5小时,返回时只用了4小时,这辆汽车返回时的速度是多少?
10.小红全家坐一辆汽车去旅游,汽车的速度大约是65千米/时,第一天行驶了6小时,第二天行驶了7小时,两天大约行驶了多少千米?
11.星期天,王亮去爬山,他从山脚爬到山顶用了15分钟,从山顶原路返回山脚用了9分钟,已知王亮上山的速度是60米/分。
(1)从山脚到山顶有多远?
(2)王亮返回时每分钟行多少米?
12.一辆汽车从甲地到乙地,先用60千米/时的速度行驶了3时,然后又用80千米/时的速度行驶了2时,正好达到乙地。甲、乙两地相距多少千米?
13.右边长方形的长增加到54米,宽不变,增加后的长方形的面积是多少?
27米
14.下面长方形绿地的宽要增加到24米,长不变。扩大后的绿地面积是多少?
8米
15.下面长方形绿地的长要增加60米,宽不变。扩大后的绿地面积是多少平方米?
30米
16妈妈打算买6千克苹果和4千克香蕉,应付多少元?
17.便民水果店2千克苹果售价5元,3千克香蕉售价10元。妈妈打算苹果和香蕉各买6千克,应付多少钱?
18.篮球12元/个,足球11元/个,老师带了50元,需要买3个球,有几种买法?
19.张老师带了5000元为学校选购25台同样的收录机。商店里的收录机有每台154元、176元、198元、216元四种价格。张老师有多少种购买方案?分别还剩多少钱?
20.学校准备发练习本,发给15个班,每班144本,还需要留40本作为备用。学校应买多少本练习本?
21.修路队修一条公路,每天修165米,已经修了18天,再修120米正好完成任务。这条公路长多少米?
22.一个计算器24元,李老师要买4个。他带了100元,钱够吗?23.公园的一头大象一天要吃350千克食物,饲养员准备了5吨食物,够大象吃20天吗?24.学校要为图书馆增添两种新书,一种是《儿童网络》,每套125元,另一种是《数学猜想》,每套18元,每种3套,一共多少元?25.大号运动衣每套145元,小号运动衣每套128元,买大号运动衣34套,小号运动衣25套。(1)两种运动服各需付多少钱?(2)一共要付多少钱?26.学校要添制44套课桌椅,桌子每张128元,椅子每张17元,一共要花多少钱?
27.每棵树苗16元,买3棵送1棵。一次买3棵,每棵便宜多少钱?
28、一只山雀5天大约能吃800只害虫,照这样计算,一只山雀一个月大约能吃多少只害虫?(一个月按30天计算。)
29、一辆长客车3小时行了174千米,照这样的速度,它12小时可以行多少千米?
30、张爷爷买3只小羊用了75元,他还想再买5只这样的小羊,需要准备多少钱?
31、5箱蜜蜂一年可以酿375千克蜂蜜。小林家养了这样的蜜蜂12箱,一年可以酿多少千克蜂蜜?
32、育英小学的180名少先队员在“爱心日”帮助军属做好事。这些少先队员平均分成5队,每队分成4组活动,平均每组有多少名少先队员?
33、刘叔叔带700元买化肥,买了16袋化肥,剩60元。每袋化肥的价钱是多少?
34、春芽鸡场星期一收的鸡蛋,18千克装一箱。装好8箱后还剩16千克。星期一收了多少千克鸡蛋?
35、王叔叔从县城开车去王庄送化肥。去的时候每小时行40千米,用了6小时,返回时只用了5小时。返回时平均每小时行多少千米?
36、一辆旅游车在平原和山区各行了2小时,最后到达山顶。已知旅游车在平原每小时行50千米,山区每小时行30千米。这段路程有多长?
37、公路两边植树,每边每千米要植树25棵,这条路长120千米,一共植树多少棵?
38、学校准备发练习本,发给15个班,每班144本,还要留40本作为备用。学校应买多少练习本?
39、一棵树苗16元,买3棵送1棵。一次买3棵,每棵便宜多少钱?
40、洗发水每瓶15元,商场开展促销活动,买4瓶送1瓶。一次买4瓶,每瓶便宜多少元?
41、一只熊猫一天要吃15千克饲料,动物园准备24袋饲料,每袋20千克,这些饲料够一只熊猫吃30天吗?
42、汽车从甲地到乙地送货,去时用了6小时,速度是32千米/小时,回来只用了4小时,回来的速度是多少?
43、小明上山用了4小时,每小时行3千米,下山的速度加快,是6千米/时,下山用了多长的时间?
44、车间原计划每天生产15台机器,24天就可以完成,实际每天生产18台,实际只要几天就可以完成任务?
45、实验小学要为三、四年级的学生每人买一本价格为12元的作文辅导书。已知三年级有145人,四年级有155人,两个年级一共需要多少元?
46、有370人去旅游,每辆汽车坐30人,要几辆汽车才能拉完?
47、有450千克大米,每天吃60千克,最多能吃几天?
48、学校校礼堂每排有28个座位,四年级共有180人,可以坐满几排?还剩几人?
49、刘叔叔带800元买化肥。买了16袋化肥,剩下80元,每袋化肥
的价钱是多少?
50.一辆长途客车3小时行了174千米。照这样的速度,它6小时
以行多少千米?要求6小时可以行多少千米?必须先求:
列式解答:
51、李叔叔开货车从佛山运货到东莞用了3小时,货车的速度是40千米/时,返回时只用了2小时,李叔叔返回时平均每小时行多少千米?
52、一列火车从甲地到乙地用12小时,平均每小时行72千米,火车提速以后,平均每小时行96千米。现在火车从甲地到乙地要用多少小时?
53、小红平均每分钟走70米,10分钟由家走到学校。如果 想7分钟走到学校,她每分钟要走多少米?如果每分钟走50米,几分钟能到学校?
54、小明拿了一些钱去买文具,如果买5角一支的铅笔可以买8支,如果买4角一块的橡皮可以买几块?如果用这些钱刚好可以买5个练习本,每本多少钱?
55、工程队修一段公路,原计划每天修45米,8天完成。实际只用6天就修完了,实际平均每天修多少米?
56、洗衣机厂门市部,上午卖出洗衣机3台,下午卖出同样的洗衣机5台,下午比上午多收货款1512元。每台洗衣机多少元?
57、洗衣机厂门市部,上午收货款2268元,下午收货款3780元,下午比上午多卖出2台洗衣机。每台洗衣机多少元?
58、洗衣机厂门市部,上午收货款2268元,下午收货款3780元,全天共卖出洗衣机8台。每台洗衣机多少元?
一辆汽车上午行了3小时,下午行了5小时。下午比上午多行了100千米。它平均每小时行多少千米?
59、一辆汽车上午行了120千米,下午用同样的速度行了200千米。下午比上午多行了2小时。它平均每小时行多少千米?
60、有3箱毛巾,每箱装12包,每包20条。共有毛巾多少条?
61、有36包毛巾,每包20条。把这些毛巾分装在3个箱子里,平均每箱装多少条?
62、有一批毛巾,如果放在3个箱子里,每箱放240条;如果放在4个箱子里,平均每箱放多少条/
63、工厂要求每人每天做36个零件。王师傅用2天就完成了3天的任务。他实际每天做多少个?
64、买28张这样的写字台共用多少元?
65、李老师带900元钱为幼儿园买牛奶。买了16箱,每箱55元,还剩下多少元?
66、一台洗衣机450元,一台笔记本电脑比洗衣机的12倍还多375元。一台笔记本电脑卖多少元?
67、哪种树苗多?多多少棵?
68、一只山雀5天大约能吃800只害虫,照这样计算,一只山雀一个月大约能吃多少只害虫?(一个月按30天计算。)
69、一辆长客车3小时行了174千米,照这样的速度,它12小时可以行多少千米?
70、张爷爷买3只小羊用了75元,他还想再买5只这样的小羊,需要准备多少钱?
71、5箱蜜蜂一年可以酿375千克蜂蜜。小林家养了这样的蜜蜂12箱,一年大约可以酿多少千克蜂蜜?
72、育英小学的180名少先队员在“爱心日”帮助军属做好事。这些少先队员平均分成5队,每队分成4组活动,平均每组有多少名少先队员?
73、刘叔叔带700元买化肥,买了16袋化肥,剩60元。每袋化肥的价钱是多少?
74、春芽鸡场星期一收的鸡蛋,18千克装一箱。装好8箱后还剩16千克。星期一收了多少千克鸡蛋?
75、王叔叔从县城开车去王庄送化肥。去的时候每小时行40千米,用了3小时,返回时只用了2小时。返回时平均每小时行多少千米?
76、一辆旅游车在平原和山区各行了2小时,最后到达山顶。已知旅游车在平原每小时行50千米,山区每小时行30千米。这段路程有多长?
77、学校要为图书馆增添两种新书,每种3套。已知《儿童网络全书》每套125元,《数学猜想》每套18元,共要化多少钱?
78、学校准备发练习本,发给15个班,每班144本,还要留40本作为备用。学校应买多少练习本?
79、一棵树苗16元,买3棵送1棵。一次买3棵,每棵便宜多少钱?
80、洗发水每瓶15元,商场开展促销活动,买2瓶送1瓶。一次买2瓶,每瓶便宜多少元?
81、一束鲜花20元,买4束送1束。李阿姨一次买4束,每束便宜多少钱?
82、学校校礼堂每排有28个座位,四年级共有180人,可以坐满几排?还剩几人?(6分)
83、刘叔叔带800元买化肥。买了16袋化肥,剩下80元,每袋化肥
的价钱是多少?(6分)
84、一辆长途客车3小时行了174千米。照这样的速度,它6小时
以行多少千米?(8分)
要求6小时可以行多少千米?必须先求:
列式解答:
85、四年级同学喜欢的运动项目如下表。(10分)
乒乓球 足球 跑步 游泳 跳绳
男生 17 18 8 14 7
女生 13 4 6 13 16
请根据以上数据制成复式条形统计图。
喜欢哪个项目的男生最多?喜欢哪个项目的女生最少?
(2)喜欢哪个项目的人最多?喜欢哪个项目的人最少?
(3)你还能提出什么数学问题?
86、 李庄小学有204名男生和216名女生。如果每20人站成一队,一共要站多少队?
87、、刘老师带200元钱,买一副羽毛球拍用去40元,剩下的钱打算买30元一副的乒乓球球拍,可以买几副?
88、临湖宾馆八月份用水279吨,平均每天用水多少吨?
89、师徒两人加工同一种零件,师傅加工了249个,徒弟加工了83个。师傅加工的零件个数是徒弟的多少倍?
90、甲乙两港之间的水路长是384千米。小明上午7:00从甲地上船,晚上7:00到达乙地。这艘客船平均每小时航行多少千米?
91、一本故事书300页。小明打算每天看42页,一个星期能看完吗?
92、一个修路队要修路726米,已经修了285米,剩下的如果每天修63米,还要用多少天?
93、江华机械厂今年七、八两个月一共用煤558吨。这两个月平均每天用煤多少吨?
94、四年级同学做了80朵红花和70朵黄花。如果每25朵花扎一个花环,这些花能扎成多少个花环?
95、四年级同学做了150朵纸花。送给幼儿园小朋友60朵后,剩下的扎成了5个花环。平均每个花环上有多少朵纸花?
96、云冈小学的学生分5个方阵表演团体操,每个方阵有9行,每行有14人。参加团体操表演的一共有多少人?
97、云冈小学的630名同学平均分成5个方阵表演团体操。如果每个方阵都有9行组成,平均每行有多少人?
98、 每箱果汁25元,小玲带200元钱可以买几箱这样的果汁?如果每箱果汁降价5元,小玲带去的钱可以买多少箱?
99、 果园里栽了780棵苹果树,又栽了5行梨树,每行12棵。苹果树的棵数是梨树的多少倍?
100、 一堆沙子有240吨,用6辆同样的卡车各运5次,正好运完。平均每辆卡车每次运了多少吨?
5. 怎么算复式折线统计图的应用题(详解)
第1分钟,老师通知1人,师生合计2人知道;
第2分钟,知道的2人再通知2人,共有4人知道内;
第3分钟,容知道的4人再通知4人,共有8人知道;
第4分钟,知道的8人再通知8人,共有16人知道。
第5分钟,知道的16人再通知16人,共有32人知道,
第6分钟,知道的32人再通知32人,共有64人知道。45人全部都知道了,需要6分钟。
小芳出席由19人参加的联欢会,散会后。每两人都要握一次手,他们一共握了多少次手? (求详解)
握手规律:
1、有19个人,从第一个人主动和别人握手,那么第一个人就主动和19-1个人握手,第二个人就只能主动和17人握手。。。。最后一个人就没有主动和别人握手。
握手总次数就是:18+17+16+。。。。+2+1=171(次)
规律:有n个人,一共握手次数就是从n-1开始,向前一直加到1。【每次比前一个数少一】
2、n个人,每一个人都可以和n-1个人握手,那么n个人就一共握手n×(n-1)次,但是纯在问题,我和你握完手,你就不用和我再握手,每一个人都重复了2次,所以n个人就一共握手n×(n-1)÷2次
19×(19-1)÷2=171次
6. 急需五年级上册应用题30道(要人教版的)
网络知道 > 教育/科学 > 科学技术 > 数学
五年级上册的应用题 悬赏分:10 | 解决时间:2010-8-3 14:47 | 提问者:isdiar
越多越好!!急着要用!!快一点!!
最佳答案 1.思索的妈妈去市场买水果她先花3.5元买了2.5KG苹果,还准备买3KG橙,橙的单价是苹果的1.6倍。买橙应付多少元?
2.小华借一本120页的故事书,她3天看了36页。如果只能借8天,从第4天起,每天至少看多少页?
3.食堂买来360千克大米,计划每天吃30千克。实际比计划多吃了3天,这批大米实际每天吃多少千克?
4.修一段长340千米的公路,前2天平均每天修20千米。余下的部分要求4天修完,平均每天修多少千米?
5.甲和乙两辆汽车分别从相距396千米的两地同时相对开出。甲车每小时行85.8千米,乙车每小时行90.2千米。经过几小时辆车相遇?
6.某运输队要运8.4万块砖,如果每小时运0.35块,能按时全部运完。如果要提前4小时全部运完,每小时应该运多少万块。
7.某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
8.一本数学读物6.25元,一本语文读物5.86元。两本书一共要多少钱?
9.一个西瓜重4.86千克,一个哈密瓜重3.5千克。一个西瓜比一个哈密瓜重多多少千克?
二小数一步乘除法应用题1一种毛线每千克48.36元,买3千克应付多少元?买0.6千克呢?
2、一个养蚕专业组养春蚕21张,一共产茧1240千克。平均每张大约产茧多少千克?
三、含有三个已知条件的两步计算应用题1、小红看一本故事书,看了5天,每天看12页,还有38页没有看。这本书一共有多少页?(画一画线段图)
食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克?
3、民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发?
四、含有两个已知条件的两步计算应用题
1、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔?
2、一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍?
五、连乘应用题
1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)
2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?
1.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
2. 塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
3.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件?
4. 水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
5.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
6. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
7.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
8. 筑一条长6.4千米的公路,前3个月平均每月筑1.2千米,剩下的每月修1.4千米,还要几个月完成?
9.小明用10.2元买文具,买了6支铅笔,每支0.45元,余下的钱买圆珠笔,每支2.5元,可以买多少支?
10. 服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后。每套节约用布0.3米,原来用的布现在可做西服多少套?
11.一本故事书,原来每页排576字,排了25页。再版时字改小了,只需排18页。现在每页比原来多排多少个字?
12. 一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。甲、乙两地的铁路长多少千米?
13.两个工程队同时合开一条1500米的隧道,甲工程队在一端开工,每天挖14米,乙工程队在另一端开工,每天挖16米,多少天后隧道可以挖通?
14. 甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务?
15.小明和小强放学后在学校门口向相反的方向行走,小明每分钟走70米,小强每分钟走68米,5分钟后两人相距多少米?
16、 甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。货车开出几小时后与客车相遇?
五年级数学应用题练习(二)
班别: 姓名: 成绩:
1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?
2、小明买了6支铅笔和4本练习本,每本练习本0.68元,每支铅笔0.24元。小明付出5元钱,应找回多少元?
3、甲、乙两列火车同时从两地相对开出,甲火车每小时行使80千米,乙火车每小时行使70千米,开出12小时后两车还相距110千米,两地相距有多少千米?
4、光明造纸厂生产一批新闻纸,原计划28天完成,每天需生产12.5吨。施加提前3天完成,实际每天比原计划多生产多少吨?
5、李师傅生产一 批零件,前3天生产零件126件,照这样计算,再生产12天完成生产任务。这批零件共有多少件?
6、化肥厂计划用30天生产化肥84吨,实际每天比计划多生产0.2吨,实际比计划提前几天完成任务?
7、加工一批服装,每天加工300套,16天可以完成,
(1) 如果每天加工400套,提前几天完成?
(2) 如果每天多加工20套,几天可以完成?
(3) 如果要提前5天完成,每天要加工多少套?
8、某汽车厂计划全年生产汽车16800台,结果提前2个月就完成了全年的生产任务。照这样的速度,全年可生产汽车多少台?
9、新丰农机厂一个车间加工2480个零件。原来每天加工100个,工作20天后,改为每天加工120个。这样再加工几天就可以完成任务?
10、一个服装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做600套这种服装所用的布,现在可以做多少套?
11、小红买了练习本和生字本各3本,一本练习本0.36元,一本生字本0.32元,小红买生字本比买练习本少用多少元?
12、同学抬水浇树。三年级浇45棵,三年级比四年级少浇10棵,四年级是五年纪浇的棵数的一半。五年级比三年纪多浇多少棵?
13、两个工程队合开一条隧道,各从一端开凿,第一队每天开12.6米,第二队每天开14.4米,第一队开凿5天后,第二队才加入,再过21天隧道终于打通。
(1)这条隧道长多少千米?
(2)打通时两队各开凿了多少米?
14、小汽车每小时行63千米,小汽车的速度是载重汽车的1.4倍。它们从相距270千米的两地同时开出,相向行驶。
(1) 经过几小时相遇?
(2) 相遇时两车各行了多少千米?
(3) 如果出发时是8时15分,相遇时是几时几分?
1一辆摩托车 小时行98千米,一辆卡车 小时行80千米,试求:
(1)摩托车与卡车所用时间之比;
(2)摩托车与卡车所行路程之比;
(3)摩托车速度与卡车速度之比。
2一辆汽车从甲地开往500千米外的乙地,已经行了280千米,求已经行的路程与剩下路程之比。
3一项工程,甲队单独做10天完成,乙队单独做8天完成,甲队与乙队工作效率之比是多少?
4五(1)班有学生40人,体育锻炼达标的有32人,未达标的人数占全班人数的百分之几(即求未达标率)?
5小李、小赵、小王三人合做一批零件,到完工时,小李做总数的 ,小赵做总数的 ,小王做总数的 ,求三人所做零件数量之比。
6 五(1)班第一次数学测试,及格的有48人,不及格的有2人。求这次数学测试的及格率。
7某车间某天出勤职工38人,缺勤2人,求出勤率。
8某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
9一套自学丛书,现在的单价是160元,比原价降低了40元,问现在的售价是原价的百分之几?
10 少先队绿化组春季植树360株,秋季植树440株,共成活760株,求树苗成活率。
11 月饼厂去年生产月饼140吨,今年生产月饼210吨,今年比去年增产百分之几?
12 6千克比5千克多百分之几?5千克比6千克少百分之几?
13 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
14服装厂下半年生产服装计划数比上半年增加20%,那么下半年生产服装计划数是上半年的百分之几?
15.油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?
16.修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?
17.油菜籽的出油率达到八成五,勤奋村种了8公顷油菜,每公顷收到油菜籽3750千克,共可出菜籽油多少千克?
18.辛庄小学六年级学生有200人,其中120人参加兴趣小组,要使参加兴趣小级的人数达到88%,还需要增加多少人参加?
19.养鸡场养肉鸡10万只,第一次卖去 ,第二次卖去25%,还剩多少万只?
20.一堆煤重120吨,第一天运走了总重量的20%,第二天运走总重量的25%,还剩下多少吨?
21.一辆汽车原来每小时用去汽油12升,修理后用油节约了10%,现在这辆汽车每小时用去汽油多少升?
22.某小学四年级有120人,五年级人哪昙渡?0%,五年级有多少人?
23.汽车 小时行24千米,摩托车每小时的速度比汽车快70%,摩托车每小时行多少千米?
24一条公路,第一个月修了全长的 ,第二个月修了6千米,还剩37.5%没有修。这条公路全长多少米?
25 某厂生产一批零件,第一天生产40件,第二天比第一天多生产10%,两天的产量占总数的25%,这批零件有多少件?
7. 什么是复式应用题。
复式应用题
小学数学应用题是教学的重点,又是教学的难点。因此在总复习中它至关重要。应用题的系统复习有助于学生理解概念,掌握数量关系,培养和提高分析问题、解决问题的能力。 一、强化基础训练,掌握数量关系 基本的数量关系是指加、减、乘、除法的基本应用,比如:求两个数量相差多少,用减法解答;求一个数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。任何一道复合应用题都是由几道有联系的一步应用题组合而成的。因此,基本的数量关系是解答应用题的基础。在复习时,我特意安排了一些补充条件的问题和练习,目的是强化学生的基础知识。使学生看到问题立刻想到解决问题所必需的两个条件;看到两个条件能迅速想到可以解决什么问题。在此基础上再出些有助于训练发散性思维的练习题。如给出两个条件:甲数是10,乙数是8,要求学生尽可能的多提出些问题。练习时,先要求学生提出用一步解答的问题,如:“甲数比乙数多多少”,“乙数比甲数少多少”“乙数占甲数的几分之几”等。然后再要求学生提出用两步解答的问题,如“甲数比乙数多几分之几”, “乙数比甲数少几分之几”“乙数占两数和的几分之几”等。对于常用的数量关系,复习时我还采用给名称让学生编题的练习形式。如已知单价和总价,编求数量的题目;已知路程和时间,编求速度的题目等。通过这种形式的训练,使学生进一步牢固掌握基本的数量关系。为解答较复杂的应用题打下良好基础。在编题训练的过程中,还要注意指导学生对数学术语的准确理解和运用。只有准确理解,才能正确运用。如增加、增加到、增加了,提高、提高到、提高了,扩大,缩小等。发现错误,及时纠正。对易混的术语,如减少了和减少到等要让学生区别清楚。 二、综合运用知识,拓宽解题思路 能够正确解答应用题,是学生能综合运用所学知识的具体表现。应用题的解答一般采用综合法和分析法。我们在复习时侧重教给分析法。如:李师傅计划做820个零件,已经做了4天,平均每天做50个,其余的6天做完,平均每天要做多少个? 分析方法是从问题入手,寻找解决问题的条件。即:①要求平均每天做多少个,必须知道余下的个数和工作的天数(6天)这两个条件。②要求余下多少个,就要知道计划生产多少个(820个)和已经生产了多少个。③要求已经生产了多少个,需要知道已经做的天数(4天)和平均每天做的个数(50个)。在复习过程中,我注重要求学生把分析思考的过程用语言表述出来。学生能说清楚,就证明他的思维是理顺的。既要重视学生的计算结果,更要重视学生表述的分析过程
8. 七年级数学难题(解答题)及答案
例1计算:
例2 已知有理数a、b、c在数轴上的对应点分别为A、B、C(如右图).化简 .
分析 从数轴上可直接得到a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.
解 由数轴知,a<0,a-b<0,c-b>0
所以, = -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c
例3 计算:
分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.
解 原式= =
例4 计算:2-22-23-24-……-218-219+220.
分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.
解 原式=2-22-23-24-……-218+219(-1+2)
=2-22-23-24-……-218+219
=2-22-23-24-……-217+218(-1+2)
=2-22-23-24-……-217+218
=……
=2-22+23
=6
【核心练习】
1、已知│ab-2│与│b-1│互为相反数,试求: 的值.
(提示:此题可看作例1的升级版,求出a、b的值代入就成为了例1.)
2、代数式 的所有可能的值有( )个(2、3、4、无数个)
【参考答案】
1、 2、3
字母表示数篇
【核心提示】
用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.
【典型例题】
例1已知:3x-6y-5=0,则2x-4y+6=_____
分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得 ,把x、y的值代入2x-4y+6可得答案 .这种方法只对填空和选择题可用,解答题用这种方法是不合适的.
解 由3x-6y-5=0,得
所以2x-4y+6=2(x-2y)+6= =
例2已知代数式 ,其中n为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .
分析 当x=1时,可直接代入得到答案.但当x=-1时,n和(n-1)奇偶性怎么确定呢?因n和(n-1)是连续自然数,所以两数必一奇一偶.
解 当x=1时,
= =3
当x=-1时,
= =1
例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25
352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……
752=5625= ,852=7225=
(1)找规律,把横线填完整;
(2)请用字母表示规律;
(3)请计算20052的值.
分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.
解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25
(2)(10n+5)2=100×n(n+1)+25
(3) 20052=100×200(200+1)+25=4020025
例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.
(1)当n=4时,S= ,
(2)请按此规律写出用n表示S的公式.
分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.
解 (1)S=13
(2)可列表找规律:
n
1
2
3
…
n
S
1
5
9
…
4(n-1)+1
S的变化过程
1
1+4=5
1+4+4=9
…
1+4+4+…+4=4(n-1)+1
所以S=4(n-1)+1.(当然也可写成4n-3.)
【核心练习】
1、观察下面一列数,探究其中的规律:
—1, , , , ,
①填空:第11,12,13三个数分别是 , , ;
②第2008个数是什么?
③如果这列数无限排列下去,与哪个数越来越近?.
2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:
【参考答案】
1、① , , ;② ;③0.
2、1+n×(n+2) = (n+1)2
平面图形及其位置关系篇
【核心提示】
平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.
【典型例题】
例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.
分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.
解 找交点最多的规律:
直线条数
2
3
4
…
n
交点个数
1
3
6
…
交点个数变化过程
1
1+2=3
1+2+3=6
…
1+2+3+…+(n-1)
图形
图1
图2
图3
…
例2 两条平行直线m、n上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.
A.20 B.36 C.34 D.22
分析与解 让直线m上的4个点和直线n上的5个点分别连可确定20条直线,再加上直线m上的4个点和直线n上的5个点各确定的一条直线,共22条直线.故选D.
例3 如图,OM是∠AOB的平分线.射线OC在∠BOM内,ON是∠BOC的平分线,已知∠AOC=80°,那么∠MON的大小等于_______.
分析 求∠MON有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.
解 因为OM是∠AOB的平分线,ON是∠BOC的平分线,
所以∠MOB= ∠AOB,∠NOB= ∠COB
所以∠MON=∠MOB-∠NOB= ∠AOB- ∠COB= (∠AOB-∠COB)= ∠AOC= ×80°=40°
例4 如图,已知∠AOB=60°,OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.
(1)求∠DOE的大小;
(2)当OC在∠AOB内绕O点旋转时,OD、OE仍是∠BOC和∠AOC的平分线,问此时∠DOE的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.
分析 此题看起来较复杂,OC还要在∠AOB内绕O点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE是∠AOB的一半,也就是说要求的∠DOE, 和OC在∠AOB内的位置无关.
解 (1)因为OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.
所以∠DOC= ∠BOC,∠COE= ∠COA
所以∠DOE=∠DOC+∠COE= ∠BOC+ ∠COA= (∠BOC+∠COA)= ∠AOB
因为∠AOB=60°
所以∠DOE = ∠AOB= ×60°=30°
(2)由(1)知∠DOE = ∠AOB,和OC在∠AOB内的位置无关.故此时∠DOE的大小和(1)中的答案相同.
【核心练习】
1、A、B、C、D、E、F是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.
2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.
【参考答案】
1、15条 2、 .
一元一次方程篇
【核心提示】
一元一次方程的核心问题是解方程和列方程解应用题。解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。
【典型例题】
例1已知方程2x+3=2a与2x+a=2的解相同,求a的值.
分析 因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x,可把2x整体代入.
解 由2x+3=2a,得 2x=2a-3.
把2x=2a-3代入2x+a=2得
2a-3+a=2,
3a=5,
所以
例2 解方程
分析 这是一个非常好的题目,包括了去分母容易错的地方,去括号忘变号的情况.
解 两边同时乘以6,得
6x-3(x-1)=12-2(x+1)
去分母,得
6x-3x+3=12-2x-2
6x-3x+2x=12-2-3
5x=7
x=
例3某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.
分析 这类问题我们应首先搞清楚利润率、销售价、进价之间的关系,因销售价=进价×(1+利润率),故还需设出进价,利用销售价不变,辅助设元建立方程.
解:设原进价为x元,销售价为y元,那么按原进价销售的利润率为
,原进价降低后在销售时的利润率为 ,由题意得:
+8%=
解得 y=1.17x
故这种商品原来的利润率为 =17%.
例4解方程 │x-1│+│x-5│=4
分析 对于含一个绝对值的方程我们可分两种情况讨论,而对于含两个绝对值的方程,道理是一样的.我们可先找出两个绝对值的“零点”,再把“零点”放中数轴上对x进行讨论.
解:由题意可知,当│x-1│=0时,x=1;当│x-5│=0时,x=5.1和5两个“零点”把x轴分成三部分,可分别讨论:
1)当x<1时,原方程可化为 –(x-1)-(x-5)=4,解得 x=1.因x<1,所以x=1应舍去.
2)当1≤x≤5时,原方程可化为 (x-1)-(x-5)=4,解得 4=4,所以x在1≤x≤5范围内可任意取值.
3)当x>5时,原方程可化为 (x-1)+(x-5)=4,解得 x=5.因x>5,故应舍去.
所以, 1≤x≤5是比不过的。
【核心练习】
1、已知关于x的方程3[x-2(x- )]=4x和 有相同的解,那么这个解是 .(提示:本题可看作例1的升级版)
2、某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是____千米/小时.
【参考答案】
1、 2、4.8
生活中的数据篇
【核心提示】
生活中的数据问题,我们要分清三种统计图的特点,条形图表示数量多少,折线图表示变化趋势,扁形图表示所占百分比.学会观察,学会思考,这类问题相对是比较简单的.
【典型例题】
例1下面是两支篮球队在上一届省运动会上的4场对抗赛的比赛结果:(单位:分)
研究一下可以用哪些统计图来分析比较这两支球队,并回答下列问题:
(1)你是怎样设计统计图的?
(2)你是怎样评价这两支球队的?和同学们交流一下自己的想法.
分析 选择什么样的统计图应根据数据的特点和要达到的目的来决定.本题可以用复式条形统计图,达到直观、有效地目的.
解 用复式条形统计图:(如下图)
从复式条形图可知乙球队胜了3场输了1场.
例2根据下面三幅统计图(如下图),回答问题:
(1)三幅统计图分别表示了什么内容?
(2)从哪幅统计图你能看出世界人口的变化情况?
(3)2050年非洲人口大约将达到多少亿?你是从哪幅统计图中得到这个数据的?
(4)2050年亚洲人口比其他各洲人口的总和还要多,你从哪幅统计图中可以明显地得到这个结论?
分析 这类问题可根据三种统计图的特点来解答.
解 (1)折线统计图表示世界人囗的变化趋势,条形统计图表示各洲人囗的多少,扇形统计图表示各洲占世界人囗的百分比.
(2)折线统计图
(3)80亿,折线统计图.
(4)扇形统计图
【核心练习】
1、如下图为第27届奥运会金牌扇形统计图,根据图中提供的信息回答下列问题:
(1)哪国金牌数最多?
(2)中国可排第几位?
(3)如果你是中国队的总教练,将会以谁为下一次奥运会的追赶目标?
【参考答案】
1、(1)美国 (2)第3位 (3)俄罗斯.
平行线与相交线篇
【核心提示】
平行线与相交线核心知识是平行线的性质与判定.单独使用性质或判定的题目较简单,当交替使用时就不太好把握了,有时不易分清何时用性质,何时用判定.我们只要记住因为是条件,所以得到的是结论,再对照性质定理和判定定理就容易分清了.
这部分另一核心知识是写证明过程.有时我们认为会做了,但如何写出来呢?往往不知道先写什么,后写什么.写过程是为了说清楚一件事,是为了让别人能看懂,我们带着这种目的去写就能把过程写好了.
【典型例题】
例1平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条.
A.7 B.6 C.9 D.8
分析与解 这样的5个点我们可以画出来,直接查就可得到直线的条数.也可以设只有A、B、C三点在一条直线上,D、E两点分别和A、B、C各确定3条直线共6条,A、B、C三点确定一条直线,D、E两点确定一条直线,这样5个点共确定8条直线.故选D.
例2已知∠BED=60°, ∠B=40°, ∠D=20°,求证:AB∥CD.
分析 要证明两条直线平行,可考虑使用哪种判定方法得到平行?已知三个角的度数,但这三个角并不是同位角或内错角.因此可以考虑作辅助线让他们建立联系.延长BE可用内错角证明平行.过点E作AB的平行线,可证明FG与CD也平行,由此得到AB∥CD.连接BD,利用同旁内角互补也可证明.
解 延长BE交CD于O,
∵∠BED=60°, ∠D=20°,
∴∠BOD=∠BED-∠D=60°-20°=40°,
∵∠B=40°,
∴∠BOD=∠B,
∴AB∥CD.
其他方法,可自己试试!
例3如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,求证: ∠EDF=∠BDF.
分析 由CE、DF同垂直于AB可得CE∥DF,又知AC∥ED,利用内错角和同位角相等可得到结论.
解 ∵CE⊥AB,DF⊥AB,
∴CE∥DF
∴∠EDF=∠DEC, ∠BDF=∠DCE,
∵AC∥ED,
∴∠DEC=∠ACE,
∴∠EDF=∠ACE.
∵CE是∠ACB的平分线,
∴∠DCE=∠ACE,
∴∠EDF=∠BDF.
例4如图,在△ABC中,∠C=90°,∠CAB与∠CBA的平分线相交于O点,求∠AOB的度数.
分析 已知∠C=90°,由此可知∠CAB与∠CBA的和为90°,由角平分线性质可得∠OAB与∠OBA和为45°,所以可得∠AOB的度数.
解 ∵OA是∠CAB的平分线,OB是∠CBA的平分线,
∴∠OAB= ∠CAB,∠OBA= ∠CBA,
∴∠OAB+∠OBA= ∠CAB+ ∠CBA= (∠CAB+∠CBA)= (180°-∠C)=45°,
∴∠AOB=180°-(∠OAB+∠OBA)=135°.
(注:其实∠AOB=180°-(∠OAB+∠OBA)=180°- (180°-∠C)
=90°+ ∠C.
所以∠AOB的度数只和∠C的度数有关,可以作为结论记住.)
【核心练习】
1、如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D,求证:β=2α.(提示:本题可看作例2的升级版)
2、如图,E是DF上一点,B是AC上一点,∠1=∠2,
∠C=∠D,求证:∠A=∠F.
【参考答案】
1、可延长BC或DC,也可连接BD,也可过C做平行线.
2、先证BD∥CE,再证DF∥AC.
三角形篇
【核心提示】
三角形全等的核心问题是证全等.根据全等的5种判定方法,找出对应的边和角,注意一定要对应,不然会很容易出错.如用SAS证全等,必须找出两边和其夹角对应相等.有时为了证全等,条件中不具备两个全等的三角形,我们就需要适当作辅助构造全等.
【典型例题】
例1如图,在△ABC中,AB=AC,D、E分别在BC、AC边上,且∠1=∠B,AD=DE.求证:△ADB≌△DEC.
分析 要证△ADB和△DEC全等,已具备AD=DE一对边,由AB=AC可知∠B=∠C,还需要一对边或一对角.由条件∠1=∠B知,找角比较容易.通过外角可得到∠BDA=∠CED.
证明 ∵AB=AC,
∴∠B=∠C,
∵∠1=∠B,
∴∠1=∠C,
∵∠BDA=∠DAC+∠C,∠CED=∠DAC+∠1
∴∠BDA=∠CED.
在△ADB和△DEC中
,
∴△ADB≌△DEC (AAS).
例2如图,AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E,求证:AB=AC+BD.
分析 要证AB=AC+BD有两种思路,可以把AB分成两段分别和AC、BD相等,也可以把AC、BD平移连接成一条线段,证明其与AB相等.下面给出第一种思路的过程.
证明 在AB上截取AF=AC,连接EF,
∵EA别平分∠CAB,
∴∠CAE=∠FAE,
在△ACE和△AFE中
,
∴△ACE≌△AFE(SAS),
∴∠C=∠AFE.
∵AC∥BD,
∴∠C+∠D=180°,
∵∠AFE+∠BFE=180°,
∴∠BFE=∠D.
∵EB平分∠DBA,
∴∠FBE=∠DBE
在△BFE和△BDE中
∴△BFE≌△BDE(AAS),
∴BF=BD.
∵AB=AF+BF,
∴AB=AC+BD.
例3如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.
分析 观察AP和AQ所在的三角形,明显要证△ABP和△QCA全等.证出全等AP=AQ可直接得到,通过角之间的等量代换可得∠ADP=90°.
证明 (1)∵BD、CE分别是△ABC的边AC和AB上的高,
∴∠AEC=∠ADB=90°,
∴∠ABP+∠BAC=∠QCA+∠CAB=90°,
∴∠ABP=∠QCA
在△ABP和△QCA中
∴△ABP≌△QCA(SAS),
∴AP=AQ.
(2)由(1)△ABP≌△QCA,
∴∠P=∠QAC,
∵∠P+∠PAD=90°,
∴∠QAC+∠PAD=90°,
∴AP⊥AQ.
【核心练习】
1、如图,在△ABC中,AB=BC=CA,CE=BD,则∠AFE=_____度.
2、如图,在△ABC中,∠BAC=90°AB=AC.D为AC中点,AE⊥BD,垂足为E.延长AE交BC于F.求证:∠ADB=∠CDF
【参考答案】
1、60
2、提示:作∠BAC的平分线交BD于P,可先证△ABP≌△CAF,再证△APD≌△CFD.
生活中的轴对称篇
【核心提示】
轴对称核心问题是轴对称性质和等腰三角形.轴对称问题我们要会画对称点和对称图形,会通过对称点找最短线路.等腰三角形的两腰相等及三线合一,好记但更要想着用,有时往往忽略性质的应用.
【典型例题】
例1判断下面每组图形是否关于某条直线成轴对称.
分析与解 根据轴对称的定义和性质,仔细观察,可知(1)是错误的,(2)是成轴对称的.
例2下列图形中对称轴条数最多的是( )
A.正方形 B.长方形 C.等腰三角形 D.等腰梯形
E.等边三角形 F.角 G.线段 H.圆 I.正五角星
分析与解 有一条对称轴的是C、D、F、G,有三条对称轴是E,有四条对称轴的是A,有两条对称轴的是B,有五条对称轴的是I,有无数条对称轴的是H.故选H.
例3 如图,AOB是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF、FG、GH……添加的钢管长度都与OE相等,则最多能添加这样的钢管______根.
分析 由添加的钢管长度都与OE相等,可知每增加一根钢管,就增加一个等腰三角形.由点到直线的所有线段中垂线段最短可知,当添加的钢管和OA或OB垂直时,就不能再添加了.
解 每添加一根钢管,就形成一个外角.如添加EF形成外角∠FEA,添加FG形成外角∠GFB.可列表找规律:
添加钢管数
1
2
3
4
…
8
形成的外角度数
20
30
40
50
…
90
当形成的外角是90°时,已添加8根这样的钢管,不能再添加了.故最多能添加这样的钢管8根.
例4小明利用暑假时间去居住在山区的外公家,每天外公都带领小明去放羊,早晨从家出发,到一片草场放羊,天黑前再把羊牵到一条小河边饮水,然后再回家,如图所示,点A表示外公家,点B表示草场,直线l表示小河,请你帮助小明和他外公设计一个方案,使他们每天所走路程最短?
分析 本题A(外公家)和B(草场)的距离已确定,只需找从B到l(小河)再到A的距离如何最小.因A和B在l的同侧,直接确定饮水处(C点)的位 置不容易.本题可利用轴对称的性质把A点转化到河流的另一侧,设为A′,不论饮水处在什么位置,A点与它的对称点A′到饮水处前距离都相等,当A′到B的距离最小时,饮水处到A和B的距离和最小.也可作B的对称点确定C点.
解 如图所示,C点即为所求饮水处的位置.
【核心练习】
1、请用1个等腰三角形,2个矩形,3个圆在下面的方框内设计一个轴对称图形,并用简练的语言文字说明你的创意.
2、如图所示,AB=AC,D是BC的中点,DE=DF,BC∥EF.这个图形是轴对称图形吗?为什么?
【参考答案】
1、略
2、是轴对称图形,△ABC与△DEF的对称轴都过点D,都与BC垂直,所以是两条对称轴是同一条直线.
通过这些核心题目的练习,如能做到举一反三,触类旁通,灵活应变.不仅会节约很多时间和精力,或许这样的练习会很有效.
9. 请帮我出二十道小学两步记算应用题
1.一个计算器24元,李老师要买4个。他带了100元,钱够吗?
2.公园的一头大象一天要吃350千克食物,饲养员准备了5吨食物,够大象吃20天吗?
3.学校要为图书馆增添两种新书,一种是《儿童网络》,每套125元,另一种是《数学猜想》,每套18元,每种3套,一共多少元?
4.大号运动衣每套145元,小号运动衣每套128元,买大号运动衣34套,小号运动衣25套。
(1)两种运动服各需付多少钱?
(2)一共要付多少钱?
5.学校要添制44套课桌椅,桌子每张128元,椅子每张17元,一共要花多少钱?
6.每棵树苗16元,买3棵送1棵。一次买3棵,每棵便宜多少钱?
7.商场搞了一次促销活动,每袋洗衣粉20元,买4袋送一袋,妈妈买了4袋,每袋便宜多少元?
8.健力宝每瓶2元4角,买3瓶送一瓶,一次买3瓶,每瓶便宜多少钱?
9.一辆汽车从甲地到乙地,去时的速度是64千米/时,共用了5小时,返回时只用了4小时,这辆汽车返回时的速度是多少?
10.小红全家坐一辆汽车去旅游,汽车的速度大约是65千米/时,第一天行驶了6小时,第二天行驶了7小时,两天大约行驶了多少千米?
11.星期天,王亮去爬山,他从山脚爬到山顶用了15分钟,从山顶原路返回山脚用了9分钟,已知王亮上山的速度是60米/分。
(1)从山脚到山顶有多远?
(2)王亮返回时每分钟行多少米?
12.一辆汽车从甲地到乙地,先用60千米/时的速度行驶了3时,然后又用80千米/时的速度行驶了2时,正好达到乙地。甲、乙两地相距多少千米?
13.右边长方形的长增加到54米,宽不变,增加后的长方形的面积是多少?
27米
14.下面长方形绿地的宽要增加到24米,长不变。扩大后的绿地面积是多少?
8米
15.下面长方形绿地的长要增加60米,宽不变。扩大后的绿地面积是多少平方米?
30米
16妈妈打算买6千克苹果和4千克香蕉,应付多少元?
17.便民水果店2千克苹果售价5元,3千克香蕉售价10元。妈妈打算苹果和香蕉各买6千克,应付多少钱?
18.篮球12元/个,足球11元/个,老师带了50元,需要买3个球,有几种买法?
19.张老师带了5000元为学校选购25台同样的收录机。商店里的收录机有每台154元、176元、198元、216元四种价格。张老师有多少种购买方案?分别还剩多少钱?
20.学校准备发练习本,发给15个班,每班144本,还需要留40本作为备用。学校应买多少本练习本?